
Transitive Closure on the Imagine Stream Processor

Gorden Griem
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley CA 94720, USA

gorden.griem@tu-harburg.de

Leonid Oliker
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley CA 94720, USA

loliker@lbl.gov

ABSTRACT
The increasing gap between processor and memory speeds
is a well-known problem in modern computer architecture.
The Imagine system is designed to address the processor-
memory gap through streaming technology. Stream proces-
sors are best-suited for computationally intensive applica-
tions characterized by high data parallelism and producer-
consumer locality with minimal data dependencies. This
work examines an efficient streaming implementation of the
computationally intensive Transitive Closure (TC) algorithm
on the Imagine platform. We develop a tiled TC algorithm
specifically for the Imagine environment, which efficiently
reuses streams to minimize expensive off-chip data trans-
fers. The implementation requires complex stream program-
ming since the memory hierarchy and cluster organization of
the underlying architecture are exposed to the Imagine pro-
grammer. Results demonstrate that limited performance
of TC is achieved primarily due to the complicated data-
dependencies of the blocked algorithm. This work is an
ongoing effort to identify classes of scientific problems well-
suited for streaming processors.

1. ALL-PAIRS SHORTEST PATH
The problem of finding all the shortest paths in a graph
is one of the most important optimizations in operations
research as it arises in many applications, most notably net-
work routing and distributed computing. Let G = (V, E)
be a directed graph with N nodes and M arcs, where the
length of the arc(i,j) is denoted by lij . The Transitive Clo-
sure (TC), or all-pairs shortest path, computes the length
of a minimum-length path between all pairs of nodes. The
classical sequential approach for solving this problem is the
O(N3) dynamic programming methodology of the Floyd-
Warshall algorithm [5] shown Figure 1. The algorithm con-
sisting of three nested loops where the inner two can be
parallelized and executed in any order. A matrix length of
dimension N × N holds the best known shortest distances
between every pair of nodes. Initially, length(i, j) contains
the length of arc (i, j) if it exists, 0 if i = j, and ∞ other-

for k = 1 to N do
for i = 1 to N do
for j = 1 to N do

if (length(i,k) + length(k,j) < length(i,j) then
length(i,j) = length(i,k) + length(k,j)

Figure 1: Floyd-Warshall (serial) algorithm

wise. As the algorithm proceeds length(i, j) is updated by
considering all possible paths from i to j that pass through a
growing set of nodes. This work presents a hardware-aware
parallel implementation of the all-pairs shortest path prob-
lem on the Imagine processor.

2. IMAGINE ARCHITECTURE
Imagine [6] is a programmable streaming microprocessor
currently being developed at Stanford University. Stream
processors are designed for computationally intensive appli-
cations characterized by high data parallelism and producer-
consumer locality with little global data reuse. The general
layout diagram of Imagine is presented in Figure 2. Imagine
contains 48 arithmetic units, and a unique three level mem-
ory hierarchy designed to keep the functional units saturated
during stream processing. The memory hierarchy consists
of off-chip SDRAM (2.1GB/s), a 128KB stream register file
(SRF) (25.6GB/s), and direct forwarding of results among
arithmetic units via 528 local register files (LRF) (435GB/s)
of which 256 per cluster are indirectly addressable. The ar-
chitecture is centered around the SRF, which reads data
from off-chip DRAM through a memory system interface
and sequentially feeds the 8 arithmetic clusters. The local
storage of the SRF can effectively reuse intermediate results
(producer-consumer locality), allowing for the amortization
of off-chip memory accesses. In addition, the SRF can be
used to overlap computations with memory traffic, by simul-
taneously reading from main-memory while writing to the
arithmetic clusters (double-buffering).

Each of Imagine’s 8 arithmetic clusters consists of 6 func-
tional units containing 3 adders, 2 multipliers, and a di-
vide/square root. Imagine is a native 32-bit architecture;
with support for performing operations on 16- and 8-bit
data resulting in two and four times the peak performance
respectively. A single microcontroller broadcasts VLIW in-
structions in SIMD fashion to all of the arithmetic clusters.
This is in contrast to traditional vector architecture which
issue a single instruction per cycle, counting on parallelism
within each vector instruction to achieve high performance.
The Imagine architecture emphasizes raw processing power



2.67
GB/s

544
GB/sSDRAM

Host 
Processor

Network
devices

Stream
Controller

Network
Interface

Arithmetic
Cluster 0

Arithmetic
Cluster 7

Microcontroller
SIMD/VLIW

Stream 
Register 

File
}32

GB/s

Imagine Processor

S
tre

am
in

g 
M

em
or

y
S

ys
te

m

Local
Register
File

Arithmetic Cluster

Figure 2: Overview of Imagine architecture

with a peak performance of 19.2 GOPS for 32-bit data; how-
ever, to achieve high performance expensive off-chip data
transfers must be minimized.

Imagine supports the relatively new stream programming
paradigm, designed to express the high degree of fine-grained
parallelism necessary to effectively utilize the large number
of functional units. The stream programming model orga-
nizes data as streams and expresses all computations as ker-
nels. A stream is an ordered set of records of arbitrary
(but homogeneous) data-objects. Kernels perform compu-
tation on entire streams, by applying potentially complex
functions to each stream record in order. However, kernels
cannot make arbitrary memory references and are limited
to only accessing data from the SRF in a sequential fashion.
The kernel memory reference restrictions allow the memory
subsystem to effectively provide data to the large number
of functional units. However, these memory access limita-
tions increase programming complexity, especially for irreg-
ularly structured applications. This approach can be viewed
as a generalization of vector computing with user defined,
coarse-grained kernel operations replacing traditional vec-
tor instructions. In addition, chaining is also generalized
through the use of the Stream Register File and producer-
consumer locality.

In Imagine, two languages are used to express a program:
StreamC is used to coordinate the streaming of data while
KernelC is used to define the computational kernels to be
performed on each stream record. Although syntactically
like C, KernelC only supports a subset of C operations de-
fined by Imagine’s instructions. Most notably, no condi-
tional branches exist. Separate stream and kernel compilers
then map these two languages to the ISA of the stream con-
troller and micro-controller respectively. The Imagine soft-
ware environment allows for automatic code optimizations
such as loop unrolling and software pipelining, as well as
visual tools for isolating performance bottlenecks.

3. POWER3 ARCHITECTURE
For comparison purposes we present performance measure-
ments on the IBM RS6000 POWER3. The POWER3 [3] is
a 64-bit PowerPC implementation with a 32-byte backside
L2 cache interface (private L2 cache bus), 32 visible and 24
renaming floating-point register, 64 KB L1 data cache acces-
sible in one cycle, and 8192 KB L2 cache accessible in nine
cycles. It has a peak execution rate of eight instructions per
cycle and a sustained performance of four instructions per
cycle.

Capable of executing up to four floating-point operations
(two multiply-add instructions) per cycle on its two identi-
cal floating-point units (FPUs), the POWER3 puts empha-
sis on floating-point performance and memory bandwidth.
The SMP-capable system design allows for concurrent op-
eration of fixed-point instructions, load/store instructions,
branch instructions, and floating-point instructions. Addi-
tionally the POWER3 supports out-of-order execution of
instructions and speculatively executed branches.

On the IBM RS/6000 SP used for our analysis [2], the pro-
cessor is clocked at 375 MHz, allowing a peak performance of
1500 MFlop/s if multiply-add instructions (FMA) are used
(750 MFlop/s otherwise.) The POWER3 processor has on-
chip hardware counters that allow the accurate gathering of
performance data including the number of execution cycles
and issued instructions. This data can be accessed by using
the Hardware Performance Measurement Toolkit [1] without
the introduction of measurement errors.

4. IMAGINE IMPLEMENTATION
The Imagine stream architecture is designed for algorithms
that exhibit little data reuse, high data parallelism, and
computational intensity. Examples which effectively uti-
lize this architecture include graphics rendering, MPEG de-
coding, and BLAS3 computations. Unfortunately TC only
satisfies two of these characteristics: the tiled algorithm is
highly data parallel and compute intensive, but requires high
global data reuse. Thus we do not expect TC to achieve
near-peak performance on this architecture. However, crit-
ical insight is gained into the microarchitectural balance of

Figure 3: Illustriation of the tiled matrix in the 4th

iteration. The arrows indicate the data dependency.
The black block is shown in black, blue blocks in
dark grey, red blocks in light grey, and white blocks
in white



the Imagine processor through a detailed analysis of the
runtime components. Some of the algorithmic considera-
tions required to effective utilize the Imagine architecture
included: converting each computational block to a data
stream, effectively reusing the limited number of address-
able registers (256 per arithmetic cluster), managing stream
register file reuse in the context of complex data dependen-
cies, and minimizing expensive off-chip memory access op-
erations.

This work develops a tiled implementation of the Floyd-
Warshall algorithm [8] which effectively uses Imagine’s
three-tiered storage hierarchy; however blocking this prob-
lem in a streaming environment is nontrivial due to complex
data dependencies. The tiled approach decomposes the do-
main into B × B tiles of size dN

B
e × dN

B
e and performs B

block iterations. During the kth block iteration, the (k, k)th

tile (called black block) is first updated, then the remainder
of the kth row (blue blocks) and kth column (red blocks). Fi-
nally the rest of the matrix (white blocks) is updated. It can
be shown that this algorithm is provably correct and that the
total processor-memory traffic is reduced to N 3/B. Given
Imagine’s 528 available local registers, the optimal block size
of dN

B
e = 16 is chosen for our experiments. With this block

size the matrix is decomposed into one black block, dN−16

16
e

red blocks, dN−16

16
e blue blocks, and

`

dN−16

16
e
´2

white blocks.

Due to differing data dependencies, each of the four colored
block types uses a special computational kernel to perform
the updates. Most notably, a black block depends only on
itself, a red/blue block on itself and the updated black block,
and a white block on the updated red block in the same row
and the updated blue block in the same column (see Fig-
ure 3. Although the same number of arithmetic operations
are executed for each color class, the runtimes vary signif-
icantly due to these data dependencies. For a blocksize of
16×16, only one block fits into the local register files. How-
ever, up to three blocks worth of data may be required to
update certain colors; thus it was necessary to modify the
loop-order of the classical Floyd-Warshall algorithm.

The limited 2.1 GB/s bandwidth between Imagine and the
host processor can be the most significant source of per-
formance bottlenecks. Therefore an intelligent implementa-
tion should minimize the volume of data transfer between
Imagine and the off-chip DRAM, by optimizing stream reuse
and thus leveraging producer-consumer locality. For TC,
the minimum memory transfer between host processor and
Imagine can be calculated in the following way: Each block
has 256 single-precision floating-point entries, resulting in
total of 1024 bytes per block or 8192 bytes per stream (a
stream contains eight blocks.) The number of iterations is
d N

16
e and at each step the host processor requires a fully

updated copy of the matrix. Taking the colored blocks into
account, we compute a lower memory bound (in bytes) as:

mem = 8192 ·

‰

N

16

ı

·

 

1 + 2 ·

‰

N − 16

8 · 16

ı

+

‰

(N − 16)2

8 · 16

ı

!

Implementing effective stream reuse can be rather challeng-
ing, since stream elements are distributed to the arithmetic
clusters in a round-robin fashion, and stream element re-

for k=0 to 255 do
in_black >> black(k);

for k=0 to 15
for i=0 to 15
for j=0 to 15

if (black(i,k)+black(k,j) < black(i,j)) then
black(i,j) = black(i,k) + black(k,j);

for k=0 to 255 do
out << black(k);

Figure 4: Pseudocode for black block update

ordering within the SRF is limited to strided and offset-
based addressing. Therefore the kernel implementing must
be carefully written to facilitate stream reuse. As a re-
sult, the kernel may consume stream elements using com-
plicated offset calculations to preserve proper element or-
dering. Other techniques such as strategically duplicating
stream elements are also used. Data transfer to the host
processor for stream reordering on the off-chip DRAM is
performed only as a last resort, due to its high overhead.

The Floyd-Warshall algorithm extensively uses addressable
registers in the three nested loops for index-based data ref-
erences. In order to directly name these registers, the loops
must be unrolled. Although this is practical for the inner
most loops, it is infeasible to unroll all three loops as the
kernels would become unreasonably long (163 = 4096 com-
parisons). Thus only a subset of the named registers can
be used in the inner-most loop, as the implementation is
bound by the 256 indirectly addressable registers. Judicious
management of these limited registers is therefore required
to optimize performance.

4.1 Black block Update
To update the black block efficiently, all 256 block elements
are read and stored into LRF, as the entries are dependent
on each other. The Floyd-Warshall algorithm is then ap-
plied to the data, with results saved in the form of an output
stream. Figure 4 shows the pseudocode for the black kernel.
Since there exists just one black block, a single kernel call
(and ALU-cluster) is required to perform the update calcula-
tion. However, our implementation sends all eight ALUs an
individual copy of the black block, allowing the same update
to be performed (redundantly) on each cluster: as a result,
the output stream consists of eight identical copies of the
updated black block. These output streams are then reused
during red and blue block updating, thus minimizing over-
head by eliminating expensive host processor traffic. This
demonstrates one example of leveraging SIMD parallelism
to optimize stream reuse.

4.2 Red and Blue Block Updates
For the red and blue updates, eight blocks are updated in
parallel on Imagine’s ALU clusters. However, fewer block
may be processed in the final step, as the red/blue blocks
may not be evenly divisible by eight. For those cases certain
blocks are distributed to more than one cluster, allowing for
better reuse of the generated output stream.

The red/blue calculations are data dependent on themselves,
as well as the updated black block. As described in Sec-
tion 4.1 the special structure of the black calculation allows



black block blue block
Figure 5: Data dependence in a blue block: The dark grey entry depends on the light grey entries

the blue and red kernels to receive the updated black data
stream directly. However since only one blocksize of 16×16
fits into the indirectly addressable registers, data depen-
dency analysis is used to optimally determine which block is
to be kept in local registers. Figures 5 and 6 show the data
dependencies for entries in the blue and red blocks respec-
tively.

red block

black block

Figure 6: Data dependence in a red block: the dark
grey entry depends on the light grey entries

For the blue blocks, it is possible to preserve the original
(k,i,j) loop ordering. Since a single entry of the black block
is only needed in the innermost loop, only one register is
required. This register is assigned a new value after the
completion of each j-loop. The blue block, is completely
stored in local registers, thus a total of 256 addressable and

for k=0 to 255 do
in_blue >> blue(k);

for k=0 to 15 do
for i=0 to 15 do
in_black >> black(i,k);
for j=0 to 15 do

if ((black(i,k) + blue(k,j)) < blue(i,j)) then
blue(i,j) = black(i,k) + blue(k,j);

for k=0 to 255 do
out << blue(k);

Figure 7: Pseudocode blue block update

for k=0 to 255 do
in_red >> red(k);

for k=0 to 15 do
for j=0 to 15 do
in_black >> black(k,j);
for i=0 to 15 do

if (red(i,k) + black(k,j) < red(i,j))
red(i,j) = red(i,k) + black(k,j);

for k=0 to 255 do
out << blue(k);

Figure 8: Pseudocode for red block update

1 named registers are required for this kernel. Figure 7 shows
the pseudocode for updating the blue blocks.

The data dependence pattern for the red block is shown
in Figure 6. Due to dependence constraints the red kernel
was implemented by interchanging the (i,j)-loop ordering.
This can performed while preserving algorithmic correct-
ness. The entry black(k, j) is only needed in the inner loop
after the loop interchange, as seen in the pseudocode of Fig-
ure 8. Thus, as in the blue block, 256 addressable and 1
named registers are required for the kernel computation.

4.3 White Block Update
Each white block entry calculation is dependent on both the
updated red block in the same column and the updated blue
block in the same row. For this case, the limited number
of registers is not sufficient for caching all of the necessary
blocks, since only a single indirectly addressable block fits
into the LRF. Therefore it was necessary to develop a spe-
cialized algorithm to address the limited register space while
minimizing off-chip data transfers.



for k=0 to 255 do
in_blue >> blue(k);

for i=0 to 15
for k=0 to 15
in_red >> red(i,k);

for j=0 to 15
in_white >> white(i,j);
for k=0 to 15

if ((red(i,k) + blue(k,j) < white(i,j))
white(i,j) = red(i,k) + blue(k,j);

out << white(i,j);

Figure 9: Pseudocode for white block update

First observe that for the white kernel the order of all three
loops in the Floyd-Warshall algorithm can be exchanged
while preserving correctness. This is because no block set
is data dependent on the output of the white update. The
pseudocode in Figure 9 shows the loops as the are executed
in an (i,j,k)-order. Due to the modified loop ordering, the
(i, j)th white entry only needs to be read once for each k-
loop. Furthermore, the ith row of the red block can be read
into named registers for one (j,k) iteration and then safely
overwritten with other data. The blue block, however, has
to be kept in memory for the duration of the kernel call. As
a result, the total number of registers needed to update a
white block is 256 addressable and 17 named registers per
cluster, easily fitting into the LRF of the Imagine SIMD
clusters.

4.4 Superblocks
Due to the inherent SIMD parallelism used to operate Imag-
ine’s eight ALU clusters, the concept superblocks is intro-
duced. A superblock consists of t × t, 8 × t, or t × 8 white
blocks, t ∈ {1, . . . , 8}, with t preferably equal to eight. For
each possible superblock size, a different updating scheme
for optimal stream reuse is implemented. As each ALU
cluster performs the update on one block, eight blocks are
updated in parallel whenever data dependencies allow. For
conciseness we omit a description of all updating schemes;
however, three important examples are show below.

4.4.1 8 × 8 superblock
The most common case for large matrices is the superblock
of size 8×8. The output stream containing the blue blocks
associated with the superblock is directly reused, but a spe-
cial variant of the red stream has to be created. In this
modified stream, every entry is contained twice such at an
element at position (k · 16 + n) is also at position (k · 16 +
8 + n), k ∈ N, n ∈ {0, . . . , 7}; thus each cluster receives two
copies of every element. A special kernel call is used to
create the modified red stream, such that no off-chip data
transfer is necessary. This scheme allows the reuse of a red
stream, with a different offset for each kernel call. A total
of eight kernel calls are needed to find the shortest paths for
all 64 white blocks of the superblock.

During the first kernel call, with a given offset of 0 for the
red stream, ALU0 calculate the shortest paths for the 0th

white block, ALU1 calculates the 9th white block and so on.
During the second kernel call, with the red stream offset by
1, ALU0 computes the 8th white block, ALU1 updates the
17th white block, etc. This continues until all 64 blocks have

1

1

1

1

1

1

1

18

8

8

8

8

8

8

87

7

7

7

7

7

7

76

6

6

6

6

6

6

65

5

5

5

5

5

5

54

4

4

4

4

4

4

43

3

3

3

3

3

3

32

2

2

2

2

2

2

2

Figure 10: Kernel call iteration for updating white
blocks in 8 × 8 superblock

been update through the eight kernel calls. Figure 10 shows
the iteration number where each white block is updated at
in a 8 × 8 superblock.

4.4.2 5 × 5 superblock
A 5 × 5 superblock contains 25 white blocks, and therefore
requires a total of d25/8e = 4 kernel calls. Computation is
performed on the first row and the first three entries of the
second row at the first kernel call; on the third row and the
first three entries of the fourth row at the second kernel call;
on the fifth row at the third kernel call; and on all other
white blocks at the fourth kernel call. Figure 11 presents an
illustration of the kernel calls.

Unfortunately, the blue stream can only be reused for the
first three kernel calls, while the red stream cannot be reused
at all. To allow reusage, the blue stream gets the 0th blue
block assigned to positions 0 and 5; the 1st blue block as-
signed to positions 1 and 6; the 2nd blue block assigned to
positions 2 and 7; and the 3rd to 5th blue block assigned to
positions 3 to 5. The blue kernel is then called, resulting in
an output stream with the same data layout, and thus al-
lowing the reuse of the blue output stream for the first three
iterations. For the fourth kernel call, a new stream has to
be generated with the 3rd blue block at positions 0 and 2,
and the 4th blue block at positions 1 and 3. This stream is
then transferred to Imagine.

The red stream, on the other hand, has to be generated and
transferred to Imagine for every kernel call. For the first
kernel call, the 0th red block is assigned to positions 0 to 4
in the stream, and the 1st red block to positions 5 to 7; in
the second kernel execution, the 2nd red block is assigned
to positions 0 to 4, and the 3rd red block to positions 5 to
7; on the third kernel call, the 4th red block is assigned to
positions 0 to 4; finally, for the fourth, the 1st red block is
assigned to positions 0 to 1 in the stream and the 3rd red
block is assigned to positions 2 to 3.

4.4.3 t × 8, 8 × t superblock
For a t × 8 superblock, the most efficient method is to up-
date one row at a time, since there are 8 blue blocks and
t red blocks associated with the superblock. This scheme
requires t kernel calls and reuses the blue stream; however,
it is necessary to create a red stream for each ith kernel call
that contains a copy of the ith red block in every entry of
the stream.



1 1 1 1 1

1 1 1

2 2 2 2 2

2 2 2

3 3 3 3 3

4 4

4 4

Figure 11: Kernel call iteration for updating white
blocks in 5 × 5 superblock

For a 8 × t superblock, there are t blue blocks and 8 red
blocks associated with the superblock. The most efficient
computation approach is to update one column at a time.
Therefore a total of t kernel calls are needed to perform
the calculation for all white blocks in the superblock. The
red stream can be reused; however the blue stream has to
be created for each iteration, such that the ith kernel call
consists of eight copies of the ith blue block.

These superblock implementations demonstrates the com-
plexity of code development in a streaming environment
where the memory hierarchy and cluster organization is ex-
posed to the programmer. Improvement in the quality of
the software development tools and abstracting lower level
details of the hardware - work currently in progress[4] - will
be essential in bringing the stream programming model to
the wider community.

5. POWER3 IMPLEMENTATION
For the reference scalar version of Transitive Closure on the
IBM POWER3, we implement the cache-efficient tilted al-
gorithm described in [8]. Since POWER3 performance is
presented as a reference point, scalar code optimizations are
not discussed in great detail.

The POWER3 algorithm is similar to the Imagine version,
where the matrix is divided into black, blue, red and white
blocks. After an extensive search, we found that a block-
size of N = 4 achieved the best performance. To allow a
fair comparison with Imagine, single-precision floating-point
arithmetic was used.

The POWER3 TC code is implemented in C and uses hand-
unrolled loops. Intermediate results are saved in local regis-
ters to allow optimal instruction scheduling/reordering. The
IBM xlc compiler is used with the optimization flags -O5 and
qarch=pwr3. This allows the generation of 32-bit code using
architecture-specific instructions and instruction scheduling
optimized for pipeline length, as well as minimized pipeline
stalls.

6. PERFORMANCE EVALUATION
We extensively gathered Imagine performance results using
the cycle-accurate simulator ISim for all problem set sizes
of N in the range of N = 32 to N = 512 (in multiples of
16). The total runtime trend shows the general behavior of
a O(N3) algorithm; however, performance irregularities can
be seen due to varying stream reusage efficiencies of different
superblock sizes. For large N , performance numbers stabi-
lize; thus for N > 512, we expect performance to behave
similarly to N = 512.

32 112 192 272 352 432 512
0

0.5

1

1.5

2

2.5

3

N

G
O

P
S

corrected
raw

Figure 12: Billions of raw and corrected operations
per second on Imagine

To evaluate performance we measure the number (in bil-
lions) of operations per second (GOPS). Since all eight arith-
metic cluster execute each given kernel, there are cases when
some of ALUs perform redundant work to improve stream
reuse. Although this artificially inflates the number of op-
erations performed, it does reduce the overall runtime. We
therefore denote raw GOPS as the total number of opera-
tions (including redundant ops), and corrected GOPS as only
those operations generating new information. For compar-
isons with other architectures, the corrected GOPS is the
proper metric of comparison.

The number of raw and corrected GOPS is presented in Fig-
ure 12. Notice that the maximum raw operations is about
2.5 GOPS for a matrix size of 48×48; however, the maximal
corrected value is only 1.66 GOPS. As can be seen in Fig-
ure 12, raw and corrected GOPS differ greatly for small ma-
trices, while for large matrices the two values converge. This
is because decomposing large matrices into colored blocks,
results in relatively few “idle” clusters. Given Imagine’s
peak performance of 19.2 GOPS, the Transitive Closure al-
gorithm achieves only 8.7% of peak. This is more than a
factor of 10 slower than media applications successfully im-
plemented on the Imagine system ([6], [7]).

As seen in Figure 13, our specialized Imagine implementa-
tion reuses data streams aggressively and results in memory
transfers near the theoretical minimum. Nonetheless, it is
the total volume of off-chip data movement that causes sig-
nificant performance degradation. Figure 14 shows that only
a small fraction of the total cycles (23%-37%) are actually
accounted for by the kernel execution. The remaining cycles
are mostly consumed for host and SRF data transfers, while
a small percentage is necessary for loading the microcode.

Although seemingly counterintuitive, the especially low frac-
tion of cycles spent on kernel execution for large matrices
can explained as follows: The black, red, blue, and white
kernels consume 45745, 41649, 41649, and 15456 cycles re-
spectively (due to different data dependencies). Since the



32 112 192 272 352 432 512
80

90

100

110

120

130

140

N

P
er

ce
nt

Figure 13: Percentage of actual versus theoreti-
cally minimal memory transfers

32 112 192 272 352 432 512
0

20

40

60

80

100

120

140

160

N

P
er

ce
nt

 o
f t

ot
al

 c
yc

le
s

Kernel executions (Computation)
Data transfer from host to Imagine
Data transfer from Imagine to host
On−chip memory "load" operations
On−chip memory "save" operations
Ucode load operations

Figure 14: TC overheads on Imagine for varying
N . Totals exceed 100% due to operation overlap

number of white blocks increases with N2 compared with
N for red/blue blocks, the average number of cycles spent
on updating a block per iteration depicted in Figure 15 de-
creases with increasing N . The total number of bytes trans-
ferred between host processor and Imagine per block also
decreases with increasing N as stream reuse becomes more
efficient (Figure 16); however it decreases slower than the
number of cycles needed to update a block. Therefore the
ratio between bytes transferred to host and consumed cy-
cles increases with N , as seen in Figure 17. This results in
more cycles spent on memory transfers even as stream reuse
becomes more efficient.

Overall, due to the data transfers and complex data de-
pendencies, our optimized hardware-aware implementation
achieves less than 10% of the sustained peak performance
on this platform, confirming that the Imagine architecture
is not well-suited for algorithms requiring global data reuse.

32 112 192 272 352 432 512
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N

cy
cl

es

36125 

16055 

Figure 15: Average computational cycles

32 112 192 272 352 432 512
0

1000

2000

3000

4000

5000

6000

7000

8000

N

by
te

s

16384 

Figure 16: Average number of bytes transferred
between Imagine and host processor

On the POWER3, all hardware counter measurement were
gathered using the highly accurate Hardware Performance
Monitor Toolkit [1]. The achieved floating point operations
per second for the POWER3 architecture can be seen in
Figure 18. Since only floating-point add operations are
used, the maximum achievable rate of floating-point instruc-
tions is 750 MFlops/s. Observe that the cache-based version
achieves more than 50% of theoretical peak. Thus, on av-
erage, more than one floating point instruction is executed
per cycle, indicating that instruction-level parallelism is ef-
fectively exploited.

A cycle comparison of the Imagine implementation with the
optimized serial implementation on the IBM POWER3 is
shown in Figure 19. At best Imagine achieves only a 20.6%
reduction in the required cycles, even though it exceeds the
POWER3 by more than 13X in raw computational power.
Additionally, the memory transfer overhead is particularly
expensive for small N , resulting in poor performance relative
to the POWER3. These results confirm that although TC is
a computationally intensive algorithm, its tiled implemen-



32 112 192 272 352 432 512
0

0.2

0.4

0.6

0.8

1

N

by
te

s/
cy

cl
e

Figure 17: Bytes transferred between Imagine and
host processor vs. computational cycles

64 128 192 256 320 384 450 512
0

100

200

300

400

500

600

700

N

M
F

lo
p/

s

Theoretical peak 

Figure 18: POWER3 performance (in MFlop/s)

tation is memory-bandwidth bound on Imagine. However,
Imagine consumes about 1

10
the energy of a POWER3 pro-

cessor, making the implementation on Imagine up to twelve
times more energy-efficient. Therefore Imagine is a good
candidate for energy-limited applications like wireless net-
work routing on mobile devices.

7. CONCLUSION
This paper examined an optimized implementation of Tran-
sitive Closure on the Imagine stream processor. We pre-
sented a tiled version of this important algorithm and de-
scribed the challenges of code development in a streaming
environment where the details of the underlying hardware
are exposed to the programmer. Extensive runtime analysis
was presented to understand the performance characteristics
and architectural bottlenecks. Overall the Imagine proces-
sor has tremendous computational potential and achieves
excellent performance for applications well-suited for its ar-
chitecture; however, off-chip memory transfers must be min-
imized. Our work shows that if random data access require-

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
10

4

10
5

10
6

10
7

10
8

10
9

N

cy
cl

es

POWER3
Imagine

Figure 19: Imagine vs. POWER3 (in cycles)

ments are sufficiently large, even computationally intensive
algorithms with hardware-aware tiled implementations do
not guarantee high performance.

Acknowledgements
The authors would like to gratefully thank Stanford’s Imag-
ine group for providing access to the Imagine simulator. We
also thank Parry Husbands for his contributions. The au-
thors were supported by Director, Office of Computational
and Technology Research, Division of Mathematical, Infor-
mation, and Computational Sciences of the U.S. Department
of Energy under contract number DE-AC03-76SF00098.

8. REFERENCES
[1] The HPM Toolkit.

http://www.alphaworks.ibm.com/tech/hpmtoolkit.

[2] NERSC IBM SP. http://www.nersc.gov/computers/SP.

[3] S. Andersson, R. Bell, J. Hague, H. Holthoff, P. Mayes,
J. Nakano, D. Shieh, and J. Tuccillo. RS/6000
Scientific and Technical Computing: POWER3
Introduction and Tuning Guide. IBM Redbook. IBM,
http://www.redbooks.ibm.com, 2003.

[4] W. Dally, P. Hanrahan, and R. Fedkiw. A streaming
supercomputer. In Whitepaper, September, 2001.

[5] R.W. Floyd. Algorithm 97: Shortest Path.
Communications ACM, 5:345, 1962.

[6] U.J. Kapasi, W.J. Dally, S. Rixner, J.D. Owens, and
B. Khailany. The Imagine Stream Processor. In Proc.
IEEE International Conference on Computer Design,
pages 282–288, 2002.

[7] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson,
B. Towles, B. Serebrin, and W. J. Dally. Media
processing applications on the imagine stream
processor, 2002.

[8] M. Penner and V. K. Prasanna. Cache-friendly
implementations of transitive closure. In Proc. of
International Conference on Parallel Architectures and
Compiler Techniques, 2001.


